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ABSTRACT

Temporal Action localization is a more challenging vision
task than action recognition because videos to be analyzed
are usually untrimmed and contain multiple action instances.
In this paper, we investigate the potential of recurrent neural
network, toward three critical aspects for solving this prob-
lem, namely, high-performance feature, high-quality tempo-
ral segments and effective recurrent neural network archi-
tecture. First of all, we introduce the two-stream (spatial and
temporal) network for feature extraction. Then, we propose a
novel temporal selective search method to generate temporal
segments with variable lengths. Finally, we design a two-
branch LSTM architecture for category prediction and confi-
dence score computation. Our proposed approach to action
localization, along with the key components, say, segments
generation and classification architecture, are evaluated on the
THUMOS’14 dataset and achieve promising performance by
comparing with other state-of-the-art methods.

Index Terms— Temporal action localization, Two-stream
ConvNet, RNN, LSTM, Temporal segment

1. INTRODUCTION

With the continuous booming number of videos on inter-
net, automatic video content analysis is widely required and
draws great research interest from both academic and indus-
try fields. An important direction of video content analysis
is action recognition, which aims to label manually trimmed
short videos. There are many works focusing on action recog-
nition with various datasets [1, 2, 3]. However, videos from
real scenarios are often long, untrimmed and contain multiple
action instances with very low time proportion. This problem
motivates a more challenging vision task: temporal action
localization, which aims to localize action instances in long
untrimmed videos and classify their categories. It can be used
in many areas such as surveillance and home care.

The action detection task of THUMOS Challenge [4] is
developed for temporal action localization. This dataset pro-
vides a large number of untrimmed videos with temporal an-
notations. Most approaches [5, 6, 7] report their results in
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THUMOS using improved Dense Trajectory (iDT) feature
with Fisher Vector coding [8]. There is also method which
uses 3D ConvNets to capture motion characteristics in video
[9]. Recently, two-stream architecture has shown better per-
formance in action recognition task over iDT and 3D Con-
vNets [2, 3, 10]. So we adopt two-stream networks for fea-
tures extraction in our approach.

How to generate temporal segments from video sequence
is another difficult problem for action localization. Sliding
window is a widely used method [7, 9]. However, it’s diffi-
cult to choose the scale for sliding window since the duration
of action instances are varied vastly. We propose a temporal
segments generation method called temporal selective search,
which is inspired by selective search [11] used in RCNN [12].
We combine temporal selective search and multi-scale sliding
window to generate temporal segments with variable length.

Since the two-stream network only explores the tempo-
ral consistency in short period, we combine two-stream fea-
tures with the Recurrent Neural Network (RNN) to explore
the temporal consistency in long sequence. There are also
some approaches using RNN for temporal action localiza-
tion [6, 13, 14, 15]. In our approach, we adopt bi-directional
long short-term memory (LSTM) [16, 17] units. We propose
a two-branch framework including a classification RNN net-
work and a confidence RNN network. These two networks
are trained separately, and their outputs are combined to form
the final prediction results.

Combining contents discussed above, we propose the
Two-Stream Segment-based Recurrent Neural Network (TSS-
RNN) framework for temporal action localization. The main
contributions of our work are summarized as follows.

(1) An effective two-branch bi-directional LSTM frame-
work for temporal action localization is proposed. Although
LSTM have been widely used before in this area, we are the
first to predict category and confidence using separate LSTM
networks. It achieves better performance than one-branch
classification network in evaluation.

(2) A new method combining multi-scale sliding window
and temporal selective search is proposed, which can improve
the quality of temporal segments.

(3) Our proposed approach reaches start-of-the-art results
on the large-scale THUMOS’ 2014 dataset. When the overlap
threshold is set as 0.3, the mAP is improved from 36.3 to 36.9.



Background

Spatial 

ConvNet

Temporal 

ConvNet

C
o

n
ca

t

Input video 

sequence

RGB image

Optical flow
Two stream features 

(TSF) sequence

(1) Two-stream features extraction

2 layer

Bidirectional

LSTM

2 layer

Bidirectional

LSTM

F
C

F
C

Confidence LSTM Network

Classification LSTM Network

Pconf

MSE

Loss

Temporal

overlap

1 dimension 

Confidence Score

Pclass

Softmax

Loss

Class

Label

K+1 dimension 

Classification Score

(3) Two-branch RNN networks (4) Post-processing

(2) Temporal segment generation

TSF sequence

Temporal

Segments

of TSF 

Candidate

Action

Instances

Result

Action

Instances

NMS

Temporal 

Selective

Search

Multi-Scale

Sliding

Window

Time

TimeTime

Temporal

Segments

of TSF 

Pconf

Pclass

Pfinal

, ,P P Pfinal i class i conf= P

Pfinal,i
Action i

Pfinal,j
Action j

Top-2

LongJump Background

LongJump

LongJump 0.65LongJump

0.85LongJump √
NMS …

Fig. 1: Framework of our approach. (1) Two stream features extraction: given an untrimmed video, we use two stream network
to extract features. (2) Temporal segments generation: we combine temporal selective search and multi-scale sliding window to
generate candidate temporal segments. (3) Two-branch RNN network: we adopt two-branch RNN architecture for classification
where each branch is a bi-directional LSTM network. (4) Post-processing: during prediction, we choose top-2 result of each
segment to form the candidate action instances and remove redundance by NMS to obtain the final action instances.

2. OUR APPROACH

The framework of our approach is shown in Fig. 1. In this
section, we give detailed descriptions of our TSS-RNN frame-
work including two-stream features extraction, segments gen-
erating, LSTM network architecture, training procedure and
post-processing method.

2.1. Two-Stream Network for Features Extraction

Feature extraction is built upon the two-stream networks pro-
posed in [2], including a spatial stream ConvNet and a tem-
poral stream ConvNet. The spatial stream ConvNet operates
on still video frame and the temporal stream ConvNet takes
optical flow stacking of 10 frames as input. We compute opti-
cal flow using GPU implementation of [18] from the OpenCV
toolbox. We concat two-stream networks’ fc8 layer outputs to
create a joint feature with twice the length of total amount of
categories. This feature extraction process is shown in Fig.
1.1. We call the two-stream network feature as TSF for short.

2.2. Temporal Segments Generating Method

Inspired by the selective search [11] method used in RCNN
[12], we propose the temporal selective search method which
can generate segments with variable length and match the
ground-truth action instances better. Our temporal selective

search method takes TSF sequence as input. First we divide
TSF sequence into 5 frames length mini-segments and calcu-
late average TSF within mini-segments. Then we merge two
adjacent mini-segments with minimum Manhattan distance of
TSF, and their TSF are averaged. Merging is continued until
there is only one segment in the sequence. Finally, we out-
put all segments existed in the merging procedure with length
between the lower and upper threshold. The lower and upper
length threshold is set to 30 and 300 frames respectively in
our experiments.

For each untrimmed video, we combine temporal selec-
tive search and multi-scale sliding window to generate tempo-
ral segments: Sfull = {sn : (TSFtstart , ..., TSFtend

)}Nn=1

as shown in Fig. 1.2. We conduct sliding windows with vari-
able lengths of 30, 60, 90, 180, 300 frames with 90% overlaps.

2.3. LSTM Network Architecture

We use a common RNN type, the Long Short-Term Memory
(LSTM) network with peephole implementation [19], to gen-
erate categories and confidence score of candidate segments.
We use TSF as the input of networks.

To exploit both past and future temporal consistency in
segments, we use bi-directional architecture in our model.
The forward and backward LSTM network have the same ar-
chitecture with a two layers LSTM network with Peephole



implementation. The number of hidden states in each layer is
256. We use normal distributed random numbers to initialize
the initial states of LSTM network. Fully connected layer fol-
lows with the LSTM network and projects features from 256
dimensions to target dimension D. D equals to 1 in the con-
fidence network and K+1 in the classification network, where
K is number of action categories. The outputs of the final
fully connected layer of forward and backward networks are
averaged to form the output of networks.

2.4. Training Procedure

Two Stream Network. We train the two stream networks us-
ing the same strategy described in [20], which adopts VGG-
16 architecture. Each input RGB frame for the spatial net-
work is resized to 224·224·3, where 3 is the number of image
channels. The temporal network takes the input of stacking
optical flow with shape 224 · 224 · 20, where 20 is ten stack-
ing optical flow images with horizontal and vertical channels.
We train the two stream networks on trimmed videos from
training set.

The Confidence Network. We train a bi-directional
LSTM network for the confidence score regression. The
higher confidence score means that this segment has higher
intersection over union (IoU) overlap with ground truth action
instances.

We use the following strategy to construct training data
Sconf = {(sn, un)}Nn=1, where un ∈ [0, 1] is the highest IoU
between the candidate segment and all ground-truth action in-
stances. To make our model more distinguishable, we only
take candidate segments with un larger than 0.6 or smaller
than 0.2 for training. We assign a segment with un ≥ 0.6 a
positive label and un ≤ 0.2 a negative label which indicates
the background. We randomly sample the background seg-
ments to make sure both positive and background segments
have similar proportion in training set.

To train the confidence network, we combine the mean
square error (MSE) loss and L2 regularization loss to form
the loss function:

Lconf =
1

N

N∑
1

(ypred − yu)2 + λ · L2(Θconf ) (1)

where ypred and yu are prediction result and ground truth
un of a segment repectively. λ balances the MSE loss and
l2 regularization loss, and Θconf is the confidence network.
Through empirical validation, we find λ = 10−5 works well.
As for parameters used in SGD, the learning rate is 10−4 and
decayed to 10−5 after 30 epochs. The batch size is set to 256.

The Classification Network. Then we train a classifica-
tion model for the K+1 action categories including the back-
ground category.

We use similar strategy to prepare the training data
Sclass = {(sn, kn)}Nn=1 , where kn ∈ {0, 1, ...,K} and 0

means background here. We reduce the amount of back-
ground segments by randomly sampling to keep the back-
ground category having roughly similar amount as every
other K action categories. And we combine the softmax
loss and l2 regularization loss to form the loss function of
classification network:

Lclass = Lsoftmax + λ · L2(Θclass). (2)

We set λ = 5 × 10−5 through empirical validation. For pa-
rameters in SGD, we take the same set as confidence network.

2.5. Prediction and Post-Processing

During prediction, we use the same method used in training to
extract TSF and generate candidate segments. For each seg-
ment, we implement both confidence and classification net-
work on it and get classification score Pclass and confidence
score Pconf . Then we multiply Pclass with Pconf and get
the final score of segment Pfinal = Pclass · Pconf . Further-
more, we choose top 2 categories of Pfinal to represent top
two action categories most likely to occur. Every segment’s
top-2 categories and corresponding Pfinal form the candi-
date action instances. In this paper, we keep segments with
Pconf ≥ 0.5. Finally, we implement non-maximum suppres-
sion (NMS) on candidate action instances to remove redun-
dant detections and get the final action instances. We set the
overlap threshold as 0.01 in NMS, so almost all overlapping
segments are removed.

3. EXPERIMENT

3.1. Dataset and Experimental Setup

For temporal action detection task of THUMOS Challenge
2014 [4], only 20 action categories (as shown in Fig. 2) are
involved and temporally annotated. The training set is the
UCF-101 [21] dataset. The validation and test sets contain
1010 and 1574 untrimmed videos with temporal annotations
of 3007 and 3358 instances respectively. We exclude back-
ground videos in validation and test sets.

The evaluation metrics is based on mean average preci-
sion (mAP) averaged over all categories. A result instance
is masked as correct if it gets the same category label with
ground truth instance and its highest IoU is larger than the
overlap threshold θ.

Parameters used in each part of approach have been given
before. We train the two stream networks using caffe [22].
And we implement two-branch LSTM networks using Ten-
sorFlow [23].

3.2. Evaluation on Two-Branch LSTM Networks

To evaluate the performance of each LSTM branch network,
we compare the two-branch TSS-RNN with one-branch TSS-
RNN. Because the confidence network can’t be tested alone



Fig. 2: Detection AP over different action classes with overlap=0.5

Table 1: Comparisons between two-branch TSS-RNN and
one-branch classification TSS-RNN on THUMOS’14.

Networks mAP (θ = 0.5)

TSS-RNN(w/o confidence network) 9.8
TSS-RNN 18.8

without the prediction from classification network, we only
test one-branch classification TSS-RNN. As shown in Table 1,
TSS-RNN with two-branch networks has significantly better
performance than TSS-RNN model with one-branch network.

3.3. Evaluation on Temporal Segments Generation Method

To check the effects of different components of our temporal
segments generation method, we evaluate multi-scale sliding
window, temporal selective search and their combination re-
spectively during testing. We use the strictest threshold 0.5
during evaluation. As shown in Table 2, multi-scale slid-
ing window shows better performance than temporal selec-
tive search. The best result can be obtained when combining
these two methods. These results indicate that temporal se-
lective search we proposed works well as the supplement of
multi-scale sliding window and improves the quality of can-
didate temporal segments.

Table 2: Comparisons between different components of our
temporal segment generation method on THUMOS’14.

Method mAP (θ = 0.5)

Temporal Selective Search 14.3
Multi-Scale Sliding Window 17.8

Combined two methods 18.8

3.4. Comparison with the State-of-the-Art Methods

Our approach is also compared with some state-of-the-art
methods [5, 6, 7, 9, 13]. In [5, 6, 7], improved Dense Trajec-

Table 3: mAP results on THUMOS’14 with variable IoU
threshold θ used in evaluation

θ 0.5 0.4 0.3 0.2 0.1

Wang et al. [7] 8.5 12.1 14.6 17.8 19.2
Oneata et al. [5] 15.0 21.8 28.8 36.2 39.8
Yeung et al. [13] 17.1 26.4 36.0 44.0 48.9

Yuan et al. [6] 18.8 26.1 33.6 42.6 51.4
Shou et al. [9] 19.0 28.7 36.3 43.5 47.7

TSS-RNN(Ours) 18.8 28.9 36.9 42.9 46.1

tory (iDT) with Fisher Vector coding [8] is used. Yeung et
al. [13] introduce a fully end-to-end approach for action de-
tection in videos, using recurrent neural network-based agent
and reinforce learning strategy. Shou et al. [9] introduce a
multi-stage segment-based 3D ConvNets, including proposal,
classification and localization network, where sliding window
method is used to generate temporal segments. Comparison
results are shown in Table 3. As can be seen, our approach
has similar performance with other state-of-the-art method,
and we improve mAP from 36.3 to 36.9 when θ = 0.3. On
categories level, we compare our approach with [9] and [13].
As shown in Fig 2, our TSS-RNN approach outperforms other
state-of-the-art systems for 6 out of 20 action categories.

4. CONCLUSION

We propose an effective two-stream temporal segment-based
RNN approach for temporal action localization. In our ap-
proach, we develop the temporal selective search method and
combine it with multi-scale sliding window to generate seg-
ments, which can improve quality of temporal segments. And
the two-branch TSS-RNN architecture we proposed shows
great improvement than one-branch architecture during eval-
uation. Our approach achieves state-of-the-art results on the
THUMOS’14 dataset. And an important direction for future
work is to further improve our method to generate higher
quality temporal segments with lower redundance.
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